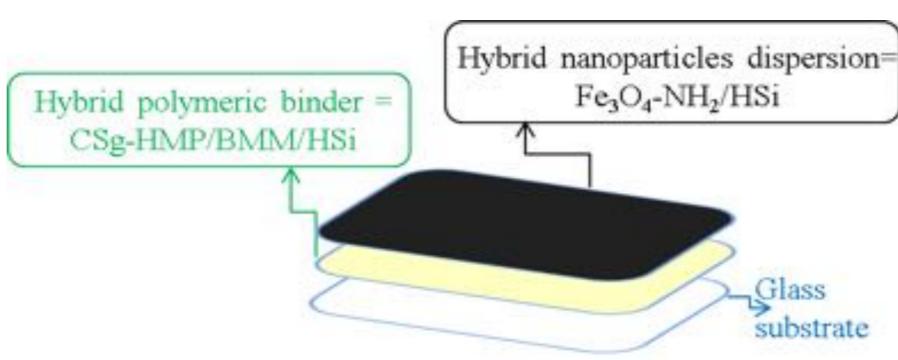
INTERNATIONAL CONFERENCE OF APPLIED SCIENCES. 10TH EDITION, 7th –9th MAY, 2014, BACĂU, ROMANIA

DEVELOPMENT OF POLYMER HYBRID COMPOSITE FILMS WITH TUNABLE WETTABILITY BY SURFACE **MODIFICATIONS**

Gianina Dodi¹, Doina Hritcu¹, Dan Draganescu¹, Vlad Carlescu², Mirabela L. Iordache¹, Marcel I. Popa¹


¹Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University of Iasi, Romania, E-mail: impopa@ch.tuiasi.ro

² Department of Mechanical Engineering, Mechatronics and Robotics, "Gheorghe Asachi" Technical University of Iasi, Romania

AIM: Evaluate and compare the wetting behavior of hybrid composite coatings prepared with two different UV initiators for water-repellent applications.

FILM COMPOSITION:

Ist layer: Hybrid polymeric binder: chitosan bearing surface vinyl groups $(CSg)^1$ cross-linked with ethylene glycol dimethacrylate (EGDMA) using UV

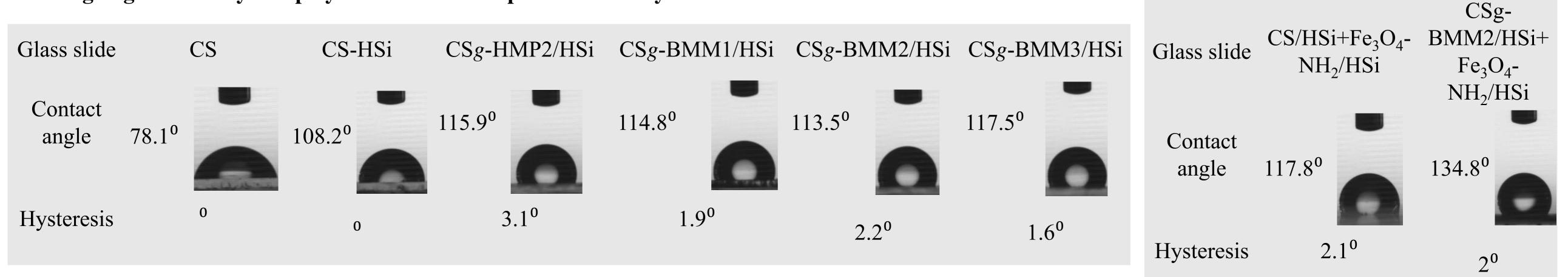
layer: Hybrid nanoparticles dispersion= IInd magnetite nanoparticles prepared by mild oxidation of ferrous ions in alkaline solution², followed by amination with (3-aminopropyl) triethoxysilane (Fe_3O_4 -NH₂)/coupling agent HSi.

initiation (2-Hydroxy-2-methylpropiophenone (HMP) and benzoin methyl ether (BMM) /coupling agent- hexadecyltrimethoxy silane (HSi);

Coupling agent= pre-hydrolyzed/precondensed sol–gel solution of HSi³

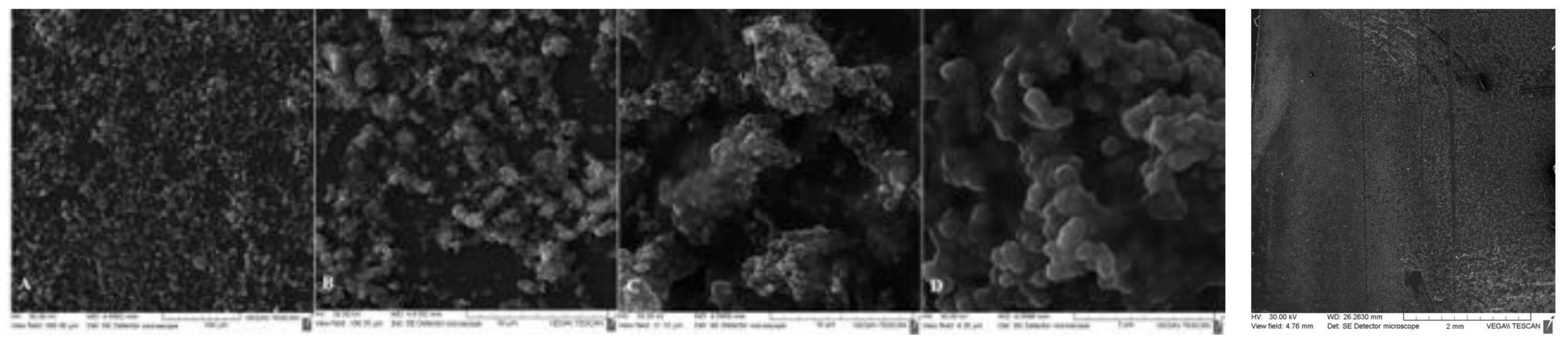
Process parameter optimization

***** Radical polymerization of CSg using HMP initiator


Batch	CS <i>g</i> (1% solid), mL	EtOH, mL	EGDMA, μL	HMP, μL
CSg-HMP1	2	1	12	12
CSg-HMP2	2	0.5	12	12
CSg-HMP3	2	1	24	24

***** Radical polymerization of CSg using BMM initiator

Batch	CS <i>g</i> (1% solid), mL	EtOH, mL	EGDMA, µL	BMM, μL
CSg-BMM1	2	1	12	12
CSg-BMM2	1	0.5	12	12
CSg-BMM3	1	2	12	12
CSg-BMM4	2	1	24	24


Wetting angle versus hybrid polymeric binder composition: one layer

Wetting angle versus coating morphology: layer-by-layer

Coating morphology: layer-by-layer deposition of CSg-BMM2/HSi+Fe₃O₄-NH₂/HSi

Scratch test: critical adhesion load was 16.4 mN

Liquid droplets wetting/non-wetting capability

Reference 1. G. Dodi et al., Chem. Eng.J., 203 (2012) 130-141. 2. G. Dodi et al., J. Magn. Magn. Mater., 388 (2015) 49-58.

CONCLUSIONS

- Two different UV initiators were successfully used to evaluate and compare the wetting behavior of hybrid composite coatings for water-repellent applications.
- The addition of iron oxide nanoparticles during the curing stage and HSi sol–gel solution both into the matrix and the nanoparticle suspension produced surfaces with hydrophobic properties.
- The newly developed hybrid coating formulation is easy to apply by spraying and it has medium adherence to the substrate.

ACKNOWLEDGEMENTS: This work was supported by a grant of the Ministry of National Education, CNCS-UEFISCDI, project number PN-II-ID-PCE-2012-4-0433.